Abstract
Creating artificial fractures in methane hydrate (MH) reservoirs to improve the reservoir permeability is considered a promising method for realizing high gas production efficiency and recovery rate in MH exploitation. A deep understanding of hydrate dissociation and gas production performance in fractured MH sediments is necessary for practical application of this method. Therefore, a large-scale MH sediment model with a single fracture was developed in this study, and the hydrate dissociation and gas production characteristics and the effect of fracture on depressurization and hot water injection processes were investigated. The numerical results indicate that the fracture in the sediment can significantly improve hydrate dissociation and gas production in the early depressurization stage, and the average gas production rate during the economical production stage increases by 30% in comparison with that without fracture, but it has less effect on the final gas production. Moreover, high fracture permeability would lead to shorter duration of the economical production stage and higher production efficiency. In addition, the fracture is beneficial for hot water to flow deep into the MH sediment, and the production efficiency and final production in the economical production stage increase after injecting hot water along the fracture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.