Abstract
Numerical analysis of a U-type solid oxide fuel cell stack was performed using computational fluid dynamics to investigate the effects of stack capacities and fuel/air utilization rates on the internal flow uniformity. The results indicated that increasing the fuel/air utilization rate improved the gas flow uniformity within the stack for the same stack capacity. The uniformity in the anode fluid domain was better than that in the cathode fluid domain. Furthermore, the flow uniformity within the stack was associated with the percentage of pressure drop in the core region of the stack. The larger the percentage of pressure drop in the core region, the more uniform the flow inside the stack. Additionally, under a fuel utilization rate of 75%, the computational results exhibited excessively high fuel utilization rates in the top cell of a 3 kWe stack, indicating a potential risk of fuel depletion during actual stack operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.