Abstract
A proper burden and porosity distribution of the bed in the upper shaft are important prerequisites for realizing a stable and efficient operation of the ironmaking blast furnace. The discrete element method was used to investigate the effects of the static friction coefficient between burden particles and shaft angle on the burden profile and porosity distribution in the bed formed by charging the burden with a bell-less charging equipment. The results indicate that a large static friction coefficient makes the particles stay closer to the impact point (i.e., where they fall) from the rotating chute. A large mixed region of the burden bed decreases the gas permeability, and an increase in the burden particle roughness will worsen this problem. The burden surface shape becomes flatter with an increase in the shaft angle. These findings explain the effect of particle properties and wall geometry on the inner structure of the burden bed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.