Abstract

In order to reduce ironmaking-related CO2 emissions, hydrogen-enriched blast furnace (BF) operation is currently under development. In hydrogen-enriched BF operation, coke layer thickness can be decreased to reduce CO2 emissions. However, BFs operating with thin coke layers may experience instability or discontinuous phenomena such as particle slip and gas channeling problems, so it is important to optimize the particle diameter and coke layer thickness for optimal BF operation. In this study, the effects of particle diameter and coke layer thickness on the solid flow and stress distribution in a BF were analyzed using a three-dimensional discrete element method. Furthermore, the effects of particle diameter and coke layer thickness on the burden layer stabilities, particle velocities, and particle stress distributions have been investigated. The results show that decreasing the coke layer thickness caused instability owing to the mixing of the coke and ore layers in the BF-cohesive zone and slight increases in both the average particle velocities and the average normal particle stress magnitudes. In addition, the average particle velocities and average normal particle stresses were higher for the smaller particles than for the larger ones during the simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call