Abstract

Apparent computational difficulties with the direct integral equation and method of moments have prompted an alternative numerical solution procedure based on the spatial decomposition technique. Using rigorous electromagnetic equivalence, the spatial decomposition technique virtually divides an electrically large object into a multiplicity of subzones. It permits the maximum size of the method of moments system matrix that needs to be inverted to be strictly limited, regardless of the electrical size of the large scattering object being modeled. The requirement on the computer resources is O(N), where N is the number of spatial subzones and each subzone is electrically small, spanning on the order of a few wavelengths. Numerical examples are reported along with comparative data and relative error estimation to expose the applicability and limitations of the spatial decomposition technique for the two-dimensional scattering study of electrically large conducting and dielectric objects.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.