Abstract

We propose a novel bio-sensor structure composed of slot dual-micro-ring resonators and mono-layer graphene. Based on the electromagnetically induced transparency (EIT)-like phenomenon and the light-absorption characteristics of graphene, we present a theoretical analysis of transmission by using the coupled mode theory and Kubo formula. The results demonstrate the EIT-like spectrum with asymmetric line profile. The mode-field distributions of transmission spectrum are obtained from 3D simulations based on finite-difference time-domain (FDTD) method. Our bio-sensor exhibits theoretical sensitivity of 330 nm/RIU, a minimum detection limit of [Formula: see text] RIU, the maximum extinction ratio of 4.4 dB, the quality factor of [Formula: see text] and a compact structure of [Formula: see text]. Finally, the bio-sensor’s performance is simulated for glucose solution. Our proposed design provides a promising candidate for on-chip integration with other silicon photonic element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.