Abstract

Variable and complex marine environmental loads combined with wave resistance and the insufficient controllability of large caisson structures pose serious challenges during maritime towing. Cable breakage events are common, and improper behaviors could give rise to a variety of accidents. This work explored the dynamic responses of large caisson structures following towing cable breakage under irregular waves combined with harsh currents. Two types of cable breakage, i.e., main bridle and towing bridle breakage, were taken into account. Four potential wave–current combinations were assumed for each situation according to direction. The obtained results show that drag rope breakage could give rise to lateral shifts in the structure, which can become a serious condition when exposed to angled waves. Additionally, following breakage, significant force fluctuations took place in the remaining intact cables. For main cable breakage, both lateral and backward displacements were observed in the structure, which gradually entered a ‘flowing with the wave’ state. Furthermore, under the two abovementioned cable breakage conditions, the structure air gap consistently exceeded 2.3 m, ignoring the possibility of a wave slamming event.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call