Abstract
ABSTRACTCombined-mode dual-phase-lag (DPL) heat conduction and radiation heat transfer is analyzed in a concentric cylindrical enclosure filled with a radiatively absorbing, emitting, and scattering medium. The governing energy equation is incorporated with volumetric radiation as a source term, essentially to take the effect of radiative heat flux into account. While the energy equation is solved using the lattice Boltzmann method (LBM), the finite volume method (FVM) is used to calculate the radiative information. To establish the accuracy of the proposed LBM formulation, the governing energy equation is also solved with the finite difference method (FDM). Thermal perturbation is caused by suddenly changing the temperature at the boundaries. Radial temperature distributions during transience as well as steady state (SS) are presented for a wide range of parameters such as lag ratio, extinction coefficient, scattering albedo, conduction–radiation (C-R) parameter, boundary emissivity, and radius ratio. Sample results are benchmarked with those available in the literature, and a good agreement between the present and reported results is found.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have