Abstract

AbstractGrinding is a very complicated processing. To increase quality of product and minimize the cost of abrasive machining, we should know physical phenomena which exist during the process. The first step to solution of this problem is analysis of machining process with a single abrasive grain. In the papers [1, 2] the thermo‐mechanical models of this process are presented, but in this work attention is concentrated on chip formation and his separation from object. The influence of failure strain εf on states of strain and stress in surface layer during machining is explained. The phenomena on a typical incremental step were described using step‐by‐step incremental procedure, with updated Lagrangian formulation. Then, the Finite Element Method (FEM) and Dynamic Explicit Method (DEM) were used to obtain the solution. Application was developed in the ANSYS system, which makes possible a complex time analysis of the physical phenomena: states of displacements, strains and stress. Numerical computations of the strain have been conducted with the use of two methodologies. The first one requires an introduction of boundary conditions for displacements in the contact area determined in modeling investigation, while the second – a proper definition of the contact zone through the introduction of finite elements of TARGET and CONTACT types, without the necessity to introduce boundary conditions. This model includes variational equations of the object's motion and deformation. Examples of calculations for the displacement, strain and stress field in the surface layer zones were presented. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.