Abstract

A three-dimensional thermal-hydraulic code using boundary-fitted coordinates systems has been developed to predict incompressible flows with complex geometries and large variations of physical properties. This code has been applied to a buoyancy-driven exchange flow in an enclosed space consisting of an upper and a lower hemisphere connected with a circular vertical pipe. The computational results have been compared with experiments. It was found that the computed heat transfer rate was smaller than that obtained from the experimental correlation in a single hemisphere at large Rayleigh number. This may be attributed to the effect on the flow behavior of a large variation of gas properties. Unsteady and asymmetric flow patterns such as observed in the experiments were numerically obtained in the vertical pipe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.