Abstract
In this paper, we use a numerical method to solve boundary-value problems for a singularly-perturbed differential-difference equation of mixed type, i.e., containing both terms having a negative shift and terms having a positive shift. Similar boundary-value problems are associated with expected first exit time problems of the membrane potential in models for the neuron. The stability and convergence analysis of the method is given. The effect of a small shift on the boundary-layer solution is shown via numerical experiments. The numerical results for several test examples demonstrate the efficiency of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.