Abstract

In this paper, we introduce a method to solve singularly perturbed differential-difference equations of mixed type, i.e., containing both terms having a negative shift and terms having a positive shift in terms of Fibonacci polynomials. Similar boundary value problems are associated with expected first exit time problems of the membrane potential in the models for the neuron. First, we present some preliminaries about polynomial interpolation and properties of Fibonacci polynomials then a new approach implementing a collocation method in combination with matrices of Fibonacci polynomials is introduced to approximate the solution of these equations with variable coefficients under the boundary conditions. Numerical results with comparisons are given to confirm the reliability of the proposed method for solving these equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.