Abstract

Innovative designs for solar collectors have attracted substantial academic and industrial interests owing to the high efficiency of solar panels in the recent past. This paper proposes the analysis and numerical design of a novel solar collector model composed of bistable laminates bonded with Macro Fiber Composite (MFC) actuators and solar cells. The bistable cross-ply laminate serves as the steering mechanism in this design by providing multiple stable shapes for the innovative solar collector design. Bistable morphing structures have received growing interest in aerospace structures and wind turbines due to their rapid shape-changing ability in response to changes in operating conditions, and this paper aims to integrate them more into the solar energy sector. The snap-through and snap-back motion of bistable laminates can be controlled by the voltage inputs of MFC actuators. The change of bistable laminate shape holds the solar cell in a position approximately at the latitude angle of the place to capture maximum solar energy. A systematic finite element parametric study has been performed to identify the optimum size and location of MFC actuators to achieve an energy-efficient snap-through and snap-back transition. As a result, a numerical design of a solar collector with six bistable elements has been proposed. In order to check the feasibility of the proposed designs, a numerical study has been performed to evaluate the total energy output and to optimize the solar panel tilt angle. ASHRAE’s solar irradiation model proposed in the literature has been used to identify the optimum solar panel tilt angle for maximum annual solar irradiation. This innovative solar collector model has demonstrated promising results, holds the potential for widespread application across various engineering domains, and paves the way for increased adoption of intelligent structures in everyday life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.