Abstract

The existence of singularities often affects the learning dynamics in feedforward neural networks. In this paper, based on theoretical analysis results, we numerically analyze the learning dynamics of radial basis function (RBF) networks near singularities to understand to what extent singularities influence the learning dynamics. First, we show the explicit expression of the Fisher information matrix for RBF networks. Second, we demonstrate through numerical simulations that the singularities have a significant impact on the learning dynamics of RBF networks. Our results show that overlap singularities mainly have influence on the low dimensional RBF networks and elimination singularities have a more significant impact to the learning processes than overlap singularities in both low and high dimensional RBF networks, whereas the plateau phenomena are mainly caused by the elimination singularities. The results can also be the foundation to investigate the singular learning dynamics in deep feedforward neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.