Abstract

Abstract A numerical study is presented that simulates small punch creep (SP-C) tests using a finite-element method (FEM). The objective of the present study is to develop a miniaturized testing methodology for high-temperature creep properties. The numerical simulations have been shown to produce deflection versus time curves that are quantitatively similar to the experimental results obtained on tungsten-alloyed 9 % Cr ferritic steels. It is also demonstrated that the numerically predicted curves show the steady state (secondary) creep stage. Furthermore, the numerical simulations reveal that the magnitude of the equivalent stress in the central region of the SP-C specimen shows no significant change with respect to time at the secondary creep stage, supporting the use of the present SP-C testing method to characterize the secondary creep deformation rate. Finally, an approximate equation is proposed for the assessment of the equivalent stress in the SP-C specimen in terms of the load and testing parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.