Abstract
The following paper presents a numerical analysis of a deep surge cycle of a 4.5 stage research compressor. The resulting unsteady loads are used to determine the response of two particular rotor blade rows that are then compared to strain gauge data from measurements. Within a deep surge cycle the compressor experiences a rapid change of the flow field from forward to reversed flow. This rapid breakdown is linked to a new mean blade load. Hence, the rapid change in blade loads are able to excite fundamental blade modes similar to an impulse load. The resulting vibration magnitudes might reach critical levels. This paper demonstrates two different approaches to evaluate the unsteady flow during a surge cycle. The first uses a three dimensional, time accurate finite volume solver for viscid compressible flows to calculate the transient surge cycle of the compressor. The compressor itself is represented by a multi-blade-row sector model. The second approach makes use of the same solver and compressor domain to determine steady state characteristics of the HPC in forward, stalled and reversed flow. Based on these characteristics an one dimensional finite volume solver for inviscid compressible flows was developed to determine the transient compressor behavior. The one dimensional solver represents the compressor by source terms that are linked to the previously determined steady state characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.