Abstract

Two laboratory tests were conducted to investigate the mechanical properties and develop a load-carrying capacity estimation method for reinforced concrete (RC) slab culverts rehabilitated with a grouted corrugated steel plate (CSP). Subsequently, 216 numerical models of RC slab culverts rehabilitated with different shapes of CSPs and grout strengths were established to investigate the influence of these parameters and the arch effect on the rehabilitated system. A mechanical model was proposed based on the elastic center method, and a load-carrying capacity estimation method of RC slab culverts rehabilitated with grouted CSPs was established and verified. It was concluded that the load-carrying capacity of the rehabilitated system increased with a decrease in the radius of the side walls and crown at a constant radius of the CSP haunch. At a constant radius of the side walls and CSP crown, the load-carrying capacity of the rehabilitated system increased with an increase in the haunch radius. The most effective way to improve the load-carrying capacity of the rehabilitated system was to increase the radius of the haunches and reduce the radius of the arch crown and side wall. The arch effect of the grout was related to the load type. The load-carrying capacity of the rehabilitated system was the highest when the CSP was similar to or the same as the arch axes of the grout. The most important function of the grout was to provide strong lateral restraint for the CSP, reducing the required span and improving the load-carrying capacity of the CSP. In addition, the shear strength of the grout contributed to improving the load-carrying capacity by exerting an arch effect or experiencing shear failure. The proposed load-carrying capacity estimation method is applicable to rehabilitated systems with a box or arch-type CSP. Our findings provide guidance for engineers to design similar rehabilitated systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.