Abstract

The local buckling behaviour and ultimate cross-sectional resistance of slender tubular elliptical profiles in bending are examined by means of numerical modelling. After successful validation of the numerical model against previous experimental results, a parametric study comprising 240 simulations was conducted in order to investigate the influence of cross-section aspect ratio, axis of bending, geometric imperfections and local slenderness on structural behaviour. The ultimate moments, moment–curvature relationships and failure modes obtained are discussed. It was found that, overall, postbuckling stability increases and imperfection sensitivity decreases with increasing elliptical hollow section (EHS) aspect ratio. A design method is proposed for Class 4 EHS members that reflects the reduction in resistance due to local buckling with increasing slenderness and extends the range of applicability of existing provisions. A reliability analysis was performed in accordance with EN 1990, indicating that the design methods for EHS in bending, in addition to previous design methods for EHS in compression, are suitable for use in the Eurocode framework with a recommended partial factor of unity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call