Abstract

The local buckling behaviour and ultimate cross-sectional strength of tubular elliptical profiles in compression is examined in this study through numerical modelling. The numerical models were first validated against previous experimental data with good agreement observed, enabling an extensive parametric study to be performed. A total of 270 elliptical sections were simulated in order to examine the influence of cross-section aspect ratio, geometric imperfections and local slendernesses. The obtained ultimate capacities, load–deformation responses and failure modes are discussed. It was found that for lower cross-section aspect ratios the behaviour of the elliptical hollow sections (EHS) was similar to that of cylindrical shells across a number of metrics; however, as the aspect ratio increased, more plate-like stable postbuckling behaviour was observed. Imperfection sensitivity was found to decrease with increasing slenderness and aspect ratio. The influence of the shape of the initial imperfection on the strengths of the EHS columns was also assessed and was found to be generally limited. Finally, a design method has been proposed for Class 4 EHS members that reflects the reduction in capacity due to local buckling with increasing slenderness, but also recognises the improved postbuckling stability with increasing aspect ratio; the proposals were shown to provide safe and accurate predictions for the strengths of the EHS columns with nondimensional local slendernesses up to 2.5 and aspect ratios from 1.1 to 5.0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.