Abstract

Purpose This paper aims to propose an efficient and convenient numerical algorithm for two-dimensional nonlinear Volterra-Fredholm integral equations and fractional integro-differential equations (of Hammerstein and mixed types). Design/methodology/approach The main idea of the presented algorithm is to combine Bernoulli polynomials approximation with Caputo fractional derivative and numerical integral transformation to reduce the studied two-dimensional nonlinear Volterra-Fredholm integral equations and fractional integro-differential equations to easily solved algebraic equations. Findings Without considering the integral operational matrix, this algorithm will adopt straightforward discrete data integral transformation, which can do good work to less computation and high precision. Besides, combining the convenient fractional differential operator of Bernoulli basis polynomials with the least-squares method, numerical solutions of the studied equations can be obtained quickly. Illustrative examples are given to show that the proposed technique has better precision than other numerical methods. Originality/value The proposed algorithm is efficient for the considered two-dimensional nonlinear Volterra-Fredholm integral equations and fractional integro-differential equations. As its convenience, the computation of numerical solutions is time-saving and more accurate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.