Abstract
An expression of the number-projected electric quadrupole moment Q2 has been established in the isovector pairing case using the SBCS discrete projection before variation method. It has been verified that this expression reduces to the pairing between like-particles one at the limit when the np pairing gap parameter Δ np goes to zero. The convergence of the projection method has been numerically tested and a fast convergence has been observed. The electric quadrupole moment has been numerically calculated for some even–even proton-rich nuclei such as 16 ≤ Z ≤ 56 and 0 ≤ (N-Z) ≤ 4. The single-particle energies and eigen-states used are those of a Woods–Saxon mean-field. The np pairing effect on Q2 has been studied either before and after the projection; it seems that it is somewhat small since the relative discrepancies do not exceed 12%. Moreover, the np pairing effect is roughly the same in both situations. However, it has been shown that this effect diminishes with increasing values of (N-Z). The projection effect on Q2 has also been studied when including, or not, the np pairing correlations. It appears that this effect is slightly less important in the np pairing case than when only the pairing between like-particles is considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.