Abstract

Spontaneous miniature outward currents (SMOCs) in parasympathetic neurons from mudpuppy cardiac ganglia are caused by activation of TEA- and iberiotoxin-sensitive, Ca(2+)-dependent K(+) (BK) channels. Previously we reported that SMOCs are activated by Ca(2+)-induced Ca(2+) release (CICR) from caffeine- and ryanodine-sensitive intracellular Ca(2+) stores. In the present study, we analyzed the single channel currents that contribute to SMOC generation in mudpuppy cardiac neurons. The slope conductance of BK channels, determined from the I-V relationship of single-channel currents recorded with cell-attached patches in physiological K(+) concentrations, was 84 pS. The evidence supporting the identity of this channel as the channel involved in SMOC generation was its sensitivity to internal Ca(2+), external TEA, and caffeine. In cell-attached patch recordings, 166 microM TEA applied in the pipette reduced single-channel current amplitude by 32%, and bath-applied caffeine increased BK channel activity. The ratio between the averaged SMOC amplitude and the single-channel current amplitude was used to estimate the average number of channels involved in SMOC generation. The estimated number of channels involved in generation of an averaged SMOC ranged from 18 to 23 channels. We also determined that the Po of the BK channels at the peak of a SMOC remains constant at voltages more positive than -20 mV, suggesting that the transient rise in intracellular Ca(2+) from ryanodine-sensitive intracellular stores in the vicinity of the BK channel reached concentrations most likely exceeding 40 microM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.