Abstract
We present a theory for the number fluctuations of a quasi-two-dimensional (quasi-2D) dipolar Bose-Einstein condensate measured with finite resolution cells. We show that when the dipoles are tilted to have a component parallel to the plane of the trap, the number fluctuations become anisotropic, i.e., depend on the in-plane orientation of the measurement cell. We develop analytic results for the quantum and thermal fluctuations applicable to the cell sizes accessible in experiments. We show that as cell size is increased the thermodynamic fluctuation result is approached much more slowly than in condensates with short range interactions, so experiments would not require high numerical aperture imaging to observe the predicted effect.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have