Abstract

In this paper, we derive the null-field integral equation for a medium containing circular cavities with arbitrary radii and positions under uniformly remote shear. To fully capture the circular geometries, separate expressions of fundamental solutions in the polar coordinate and Fourier series for boundary densities are adopted. By moving the null-field point to the boundary, singular integrals are transformed to series sums after introducing the concept of degenerate kernels. The solution is formulated in a manner of a semi-analytical form since error purely attributes to the truncation of Fourier series. The two-hole problems are revisited to demonstrate the validity of our method. The bounded-domain approaches using either displacement or stress approaches are also employed. The proposed formulation has been generalized to multiple cavities in a straightforward way without any difficulty.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.