Abstract

We present the Lagrangian and Hamiltonian framework which incorporates null dust as a source into canonical gravity. Null dust is a generalized Lagrangian system which is described by six Clebsch potentials of its four-velocity Pfaff form. The Dirac--ADM decomposition splits these into three canonical coordinates (the comoving coordinates of the dust) and their conjugate momenta (appropriate projections of four-velocity). Unlike ordinary dust of massive particles, null dust therefore has three rather than four degrees of freedom per space point. These are evolved by a Hamiltonian which is a linear combination of energy and momentum densities of the dust. The energy density is the norm of the momentum density with respect to the spatial metric. The coupling to geometry is achieved by adding these densities to the gravitational super-Hamiltonian and supermomentum. This leads to appropriate Hamiltonian and momentum constraints in the phase space of the system. The constraints can be rewritten in two alternative forms in which they generate a true Lie algebra. The Dirac constraint quantization of the system is formally accomplished by imposing the new constraints as quantum operator restrictions on state functionals. We compare the canonical schemes for null and ordinary dust and emhasize their differences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.