Abstract

Objectives Experimental models to test the effective protection against cardiac ischemia injury are still challenging in pre-clinical studies. The use of myocardial slices creates a special link between testing isolated cardiomyocytes and whole-heart research. In this work, we investigated the effects of oxygen deprivation in a hypoxic chamber and treatment with cobalt chloride (CoCl2) on the nucleotide profile in isolated mouse myocardial slices. Methods 200 μm-thick left ventricle myocardial slices were obtained from 3-month-old male C57Bl/6J mice using an oscillatory microtome. Slices were then exposed to 1% O2 atmosphere or 100 μM CoCl2 at 37 °C for 45 min and used for nucleotide measurements using ultra-high-performance liquid chromatography. The effects of two short-term experimental models of hypoxia were compared to 2′-deoxyglucose with oligomycin (2-DG + OLIGO) treatment, which inhibited both glycolysis and mitochondrial ATP synthesis. Key findings A significant effect of hypoxia with 1% O2 was observed on adenosine triphosphate (ATP) and total adenine nucleotide (TAN) concentrations as well as on adenylate energy charge (AEC), ATP/ADP and ATP/AMP ratios. Oxygen deprivation caused changes almost as profound as 2-DG + OLIGO, emphasizing the critical role of mitochondrial oxidative phosphorylation in the energy metabolism of cultured heart slices. CoCl2 treatment that elicits hypoxia-like responses via HIF-1α stabilization only slightly affected nucleotide levels. This suggests that mechanisms induced by cobalt ions require more time to change the cardiac energy metabolism. Conclusions A short-term culture of myocardial slices in a hypoxic chamber seems to be an appropriate model of cardiac ischemia for testing new pharmacological approaches based on modulating the energy metabolism of cardiac cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call