Abstract

Binding constants for the nucleotide substrates were determined in two different crystalline forms of pig muscle 3-phosphoglycerate kinase (PGK): the binary complex with 3-phosphoglycerate (3-PG) in which the two domains are in an open conformation (Harlos, Vas, and Blake (1992) Proteins, 12, 133-144) and the ternary complex with 3-PG and the Mg salt of the ATP analogue, beta,gamma-methyleneadenosine-5'-triphosphate (AMP-PCP), the structure of which is under resolution. Competitive titrations have been performed in the presence of the chromophoric analogue of ATP, 2'3'-O-(2,4,6-trinitrophenyl)ATP (TNP-ATP), similar to those previously carried out in solution, where a weakening of the binding of the nucleotide substrates in the presence of the other substrate, 3-PG, has been observed (Vas, Merli, and Rossi (1994) Biochem. J. 301, 885-891). Here the K(d) values for MgADP were found to be 0.096 +/- 0.021 and 0.045 +/- 0.016 mM, respectively, for the crystals of the binary and ternary complexes. Both K(d) values are significantly smaller than the one obtained in solution in the presence of 3-PG (0.38 +/- 0.05 mM) and are close to the values determined in solution in the absence of 3-PG (0.06 +/- 0.01 mM). Thus, the "substrate antagonism" observed in solution is not present in either of the investigated crystal forms. Further nucleotide binding studies with the solubilized enzyme have shown that 3-PG has no effect on ADP (Mg(2+)-free) binding (K(d) = 0.34 +/- 0.05 mM), while it weakens MgADP binding. Thus, 3-PG abolishes the strengthening effect of the Mg(2+) ion on the binding of ADP. This phenomenon is apparently due to the interaction between the carboxyl group of 3-PG and the protein, since the carboxyl-lacking analogue glycerol-3-phosphate has no detectable effect on MgADP binding. Comparison of the crystallographic data of different PGK binary (with either 3-PG or MgADP) and ternary (with both 3-PG and MgADP) complexes, having open and closed conformations, respectively, provides a possible structural explanation of the substrate antagonism. We suggest that the specific interaction between the 3-PG carboxylic group and a conserved arginine side chain is changed during domain closure, and, through interdomain communication, this change may be transmitted to the site in which Mg(2+) binds the ADP phosphates. This effect is abolished in the crystals of pig muscle PGK, in which lattice forces stabilize the open domain conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.