Abstract
Correlation between the Na,K-ATPase affinity to ADP and the cation (its nature and concentration) present in the medium was investigated. In buffer with low ionic strength (I approximately 1 mM) high-affinity ADP binding was not observed, while a stepwise increase in the concentrations of added cation (Na(+), Tris(+), imidazole(+), N-methylglucamine(+), choline(+)) induced an increase in the ADP affinity. The effect was fully saturated at 30-50 mM for all of the cations tested. The maximal affinity for ADP was slightly higher in the presence of Na(+), Tris(+), or imidazole(+) than in the presence of N-methylglucamine(+) or choline(+) (equilibrium dissociation constant K(d) 0.2-0.3 vs 0.7 microM). The ADP dissociation rates from its complex with enzyme in the presence of Na(+) or Tris(+) were similar, implying identity of the nucleotide-binding enzyme conformations, which therefore are assigned to E(1). The ability to compete with K(+) clearly distinguished Na(+) from other cations, which speaks against the sole involvement of the transport sites in the induction of the ADP-binding E(1) conformation. Since the cations are similar in their mode of induction of the high ADP affinity but they demonstrate a pronounced difference in ability to compete with K(+), their effects cannot be combined within any scheme with only one type of cation-binding sites. We suggest that the high affinity toward nucleotide is induced by cation interactions within the protein or lipid and that these nucleotide-domain-related sites coexist with the transport sites, which bind only Na(+) or K(+).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.