Abstract

Mutant a and alpha yeast cells were created with histone H3 containing cysteine in place of alanine 110. Because transcriptionally active nucleosomes "unfold" to reveal the histone H3-thiol groups at the center of the core, the active nucleosomes of the mutant strain can be isolated by mercury-affinity chromatography. We compared the unbound and mercury-bound nucleosomes of haploid H3-mutant strains expressing either the MAT alpha or the MATa mating-type locus. In a MAT alpha strain, the Hg-bound nucleosomes are enriched in MAT alpha DNA but lack the DNA of the transcriptionally silent HMRa mating-type locus. Conversely, in a MATa strain, the Hg-bound nucleosomes are enriched in MATa DNA sequences but deficient in HML alpha DNA. When the SIR3 gene, known to be required for silencing of the repressed mating-type loci, is mutated in the MAT alpha strain, transcription of the HMRa ensues, and its nucleosomes, as well as those of the MAT alpha locus, are retained by the organomercurial column. It follows that derepression of the silent mating-type locus, caused by the sir3 null mutation, is accompanied by an unfolding of its nucleosomes to reveal the histone H3 SH groups at their centers. Nucleosomes of the pheromone-encoding gene MFA2, a gene that is expressed in MATa cells but not in MAT alpha cells, are bound to the organomercurial column when isolated from MATa cells but not from MAT alpha cells. Thus, there is a good correlation between nucleosome unfolding and the renewed transcriptional activity at mating-type loci, and at MFA2, which had been silenced for prolonged periods. A close temporal correlation between nucleosome refolding and the cessation of transcription is not always observed in yeast, however, in contrast to observations in mammalian cells. For example, nucleosomes of the GAL1 gene are maintained in a "poised" or "primed" thiol-reactive state even when the gene is not being transcribed (Chen, T. A., Smith, M. M., Le, S., Sternglanz, R., and Allfrey, V. G. (1991) J. Biol. Chem. 266, 6489-6498). It follows that the unfolding of the nucleosome cores of the yeast H3 mutant is regulated by factors that are not temporally linked to the recruitment or traverse of the RNA polymerase complex, but which may determine the rate at which different domains of chromatin adapt to the need for transcription of the associated DNA sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.