Abstract

Nucleoside-diphosphate kinase (NDP kinase), a key enzyme in nucleotide metabolism, is also known to be involved in growth and developmental control and tumor metastasis suppression. Interestingly, we find that coexpression of NDP kinase with Taz1, a Tar/EnvZ chimera, in the absence of its native signal, can activate a porin gene ompC-lacZ expression in Escherichia coli. Further studies show that NDP kinase can act as a protein kinase to phosphorylate histidine protein kinases such as EnvZ and CheA which are members of the His-Asp phosphorelay signal transduction systems in E. coli. Instead of ATP, the exclusive phosphodonor for histidine kinases, GTP can be utilized in vitro in the presence of NDP kinase to phosphorylate EnvZ and CheA, which then transfer the phosphoryl group to OmpR and CheY, the respective response regulators. The direct involvement of GTP for the phosphorylation of EnvZ through NDP kinase was further demonstrated by the use of a mutant EnvZ, which lost ability to be autophosphorylated with ATP. Phospho-OmpR thus formed can bind specifically to an ompF promoter sequence. These results suggest that NDP kinase may play a physiological role in signal transduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.