Abstract
To elucidate the physicochemical basis of differences between the isoforms of mammalian multifunctional nucleoside diphosphate kinase (NDP), we investigated the recombinant rat homohexameric NDP kinases alpha and beta, consisting of highly homologous alpha or beta subunits of 152 residues each and differing only in variable regions V1 and V2, and their chimerical forms (NDP kinase alpha(1-130)beta(131-152) and NDP kinase beta(1-130)alpha(131-152)) and tagged derivatives (NDP kinase HA-alpha(1-130)beta(131-152), NDP kinase HA-beta(1-130)alpha(131-152), and NDP kinase HA-beta). The thermal stability of these proteins and the ability of some of them to interact with the rhodopsin-transducin (R*Gt) complex have been studied. It was found that NDP kinase alpha, NDP kinase alpha(1-130)beta(131-152), and NDP kinase HA-alpha(1-130)beta(131-152) were similar in their thermal stability (T(1/2) = 61-63 degrees C). NDP kinase beta, NDP kinase beta(1-130)alpha(131-152), NDP kinase HA-beta(1-130)alpha(131-152), and NDP kinase HA-beta were inactivated at a lower temperature (T(1/2) = 51-54 degrees C). NDP kinase HA-alpha(1-130)beta(131-152) interacted with the R*Gt complex in the same manner as NDP kinase alpha, whereas the interaction of NDP kinase HA-beta(1-130)alpha(131-152) and NDP kinase beta with the photoreceptor membranes under the same conditions was very weak. It is suggested that the variability of the region V1 is a structural basis for the multifunctionality of NDP kinase hexamers in the cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.