Abstract

We have compared the binding energy of nuclear matter and the nucleon–nucleus optical potential, calculated in Brueckner theory starting from both the soft-core Urbana V-14 and the hard-core Hamada–Johnston internucleon potentials. Our results show that the real central part of the optical potential calculated from V-14 is about 10 MeV deeper than from the hard-core potential in the energy region 1–200 MeV. This greater depth mainly comes from the internucleon S- and D-states. In these states, the V-14 and Hamada–Johnston potentials give different phase shifts, the V-14 being in better agreement with experimental data. This difference is further enhanced by the Pauli principle in the calculation of the optical potential. Our analysis of proton–40 Ca differential cross-section and polarization data, in the energy region 30–200 MeV, shows that the optical potential calculated using V-14 is in better agreement with the data as compared with the Hamada–Johnston potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.