Abstract
We construct spin-improved holographic light front wavefunctions for the nucleons (viewed as quark-diquark systems) and use them to successfully predict their electromagnetic Sachs form factors, their electromagnetic charge radii, as well as the axial form factor, charge and radius of the proton. The confinement scale is the universal mass scale of light-front holography, previously extracted from spectroscopic data for light hadrons. With the Dirac and Pauli form factors normalized using the quark counting rules and the measured anomalous magnetic moments respectively, the masses of the quark and diquark are the only remaining adjustable parameters. We fix them using the data set for the proton's Dirac-to-Pauli form factor ratio, and then predict all other data without any further adjustments of parameters. Agreement with data at low momentum-transfer is excellent. Our findings support the idea that light (pseudoscalar and vector) mesons and the nucleons share a nonperturbative universal holographic light-front wavefunction which is modified differently by their spin structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.