Abstract
AbstractIonogels are considered as ideal candidates for constructing flexible electronics due to their superior electrical conductivity, flexibility, high thermal and electrochemical stability. However, it remains a great challenge to simultaneously achieve high sensitivity, repeated adhesion, good self‐healing, and biocompatibility through a straightforward strategy. Herein, inspired by nucleobase‐tackified strategy, a multifunctional adhesive ionogel is developed through one‐step radical polymerization of acrylated adenine/uracil (Aa/Ua) and acrylic acid (AA) monomers in sodium caseinate (SC) stabilized liquid metal dispersions. As a soft conductive filler, the incorporating of liquid metal not only improves the electrical conductivity, but also enhances the mechanical strength, satisfying the stretchable sensing application. The large amount of noncovalent interactions (hydrogen bonding, metal coordination, and ion‐dipole interactions) within the networks enable the ionogels to possess excellent stretchability, skin‐like softness, good self‐healing, and strong adhesion. Based on these desirable characteristics, the ionogel is suitable for wearable strain sensors to precisely detect diverse human movements under extreme environments. Moreover, the seamless adhesion with human skin allows the ionogel to function as bioelectrode patch for long‐term and high‐quality electrophysiological signal acquisition. This research provides a promising strategy for designing ionogels with tailored functionalities for wearable electronics that satisfy diverse application requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.