Abstract

Cervical cancer, which has been affecting women worldwide as the second most common cancer, can be cured if detected early and treated well. Routinely, expert pathologists visually examine histology slides for cervix tissue abnormality assessment. In previous research, we investigated an automated, localized, fusion-based approach for classifying squamous epithelium into Normal, CIN1, CIN2, and CIN3 grades of cervical intraepithelial neoplasia (CIN) based on image analysis of 61 digitized histology images. This paper introduces novel acellular and atypical cell concentration features computed from vertical segment partitions of the epithelium region within digitized histology images to quantize the relative increase in nuclei numbers as the CIN grade increases. Based on the CIN grade assessments from two expert pathologists, image-based epithelium classification is investigated with voting fusion of vertical segments using support vector machine and linear discriminant analysis approaches. Leave-one-out is used for the training and testing for CIN classification, achieving an exact grade labeling accuracy as high as 88.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.