Abstract

In prior research, the authors introduced an automated, localized, fusion-based approach for classifying squamous epithelium into Normal, CIN1, CIN2, and CIN3 grades of cervical intraepithelial neoplasia (CIN) from digitized histology image analysis. The image analysis approach partitioned the epithelium along the medial axis into ten vertical segments. Texture, cellularity, nuclear characterization and distribution, and acellular features were computed from each vertical segment. The individual vertical segments were CIN classified, and the individual classifications were fused to generate an image-based CIN assessment. In this chapter, image analysis techniques are investigated to improve the execution time of the algorithms and the CIN classification accuracy of the baseline algorithms. For an experimental data set of 117 digitized histology images, execution time for exact grade CIN classification accuracy was improved by 32.32 seconds without loss of exact grade CIN classification accuracy (80.34% vs. 79.49% previously reported) for this same data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.