Abstract
Identifying the operative mode of phase separation [spinodal decomposition (SD) or nucleation-growth (NG)] remains an extremely important area of research. The present work examines this critically in the Fe-Cr system using atom probe tomography (APT) and small angle neutron scattering (SANS), and establishes the framework to distinguish the two different modes of α' phase separation in thermally aged Fe-35 at% Cr and Fe-20 at% Cr alloys. Independent APT analysis determines the mode of phase separation on the basis of (i) the presence/absence of periodic chemical fluctuation through radial distribution function analysis and (ii) interphase interface characteristics (diffuse/sharp). SANS analysis, in contrast, yields virtually indistinguishable correlation peaks for both the modes, which necessitates further investigation of the several different aspects of SANS profiles in the light of APT results. For the first time, key features of SANS profiles have been identified that can unambiguously distinguish SD from NG in the Fe-Cr system: (i) nature of temporal evolution of FWHM of the correlation peak and (ii) appropriate value of γ for fitting with the dynamic scaling model (γ = 6 for SD, Fe-35 at% Cr alloy; γ = 4 for NG, Fe-20 at% Cr alloy).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.