Abstract
Conventional directed evolution methods offer the ability to select bioreceptors with high binding affinity for a specific target in terms of thermodynamic properties. However, there is a lack of analogous approaches for kinetic selection, which could yield affinity reagents that exhibit slow off-rates and thus remain tightly bound to targets for extended periods. Here, we describe an in vitro directed evolution methodology that uses the nuclease flap endonuclease 1 to achieve the efficient discovery of aptamers that have slow dissociation rates. Our nuclease-assisted selection strategy can yield specific aptamers for both small molecules and proteins with off-rates that are an order of magnitude slower relative to those obtained with conventional selection methods while still retaining excellent overall target affinity in terms of thermodynamics. This new methodology provides a generalizable approach for generating slow off-rate aptamers for diverse targets, which could, in turn, prove valuable for applications including molecular devices, bioimaging, and therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.