Abstract

An experimental investigation of the temperature dependence of the nuclear magnetic resonance relaxation phenomena of water vapor adsorbed on silica gel is described. Two-component relaxation data are observed. With temperature increase, the longer T/sub 2/ value decreases while its fractional population increases. These data are shown to be consistent with nuclear transfers between two state environments possessing distinct relaxation characteristics. and a comparison with theory is made. Evidence of a change of surface characteristics is presented; for early experiments, two-component longitudinal relaxation occurs below a transition temperature; in later experiments, only one-component T/sub 1/ behavior is found. A theory for an anisotropic motional model for nuclear magnetic dipole-dipole relaxation on surfaces is presented. The motional model is random reorientation of the interproton vector about an axis normal to the surface that occurs much faster than the time dependence of the angle between the vector and this axis. The relaxation processes are thus related to multiple nuclear correlation times. Consequences of an anisotropic model agree with experimental observations. (auth)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call