Abstract
Shell model calculation has been performed for even–even [Formula: see text]Zn using NuShellX code in [Formula: see text] model space with two different effective Hamiltonians, viz. JUN45 and jj44b. The low-lying structure is studied up to angular momentum, [Formula: see text] = 10[Formula: see text] by calculating level energies, reduced transition probabilities, occupation numbers, lifetimes, and quadrupole moments. The results of the calculations are compared with the available experimental data. It is observed that the inclusion of 1[Formula: see text] orbital in the model space is essential to understand nuclear structure in these isotopes. Shell model calculation with an improved set of effective Hamiltonian parameters and inclusion of [Formula: see text] orbital in the model space are necessary in order to produce finer agreement with the experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.