Abstract

The spin-polarization of nuclei near a two-dimensional electron gas (2D EG) may be relaxed by spin-flip excitations of the electron system. The spectrum of low-energy electronic spin-flip excitations depends on the disorder broadening of Landau levels and on the interaction enhancement of the Landau-level spin splitting. Disorder vertex corrections to the spin-flip response function capture the fact that the nuclear relaxation rate depends on local rather than thermodynamic Landau-level broadening, while interaction vertex corrections can strongly enhance the relaxation rate. We illustrate these effects by summing the disorder and interaction ladder diagrams for the spin-flip response function in the strong-magnetic-field limit. Our approach is also able to describe the effect of disorder on the spin-wave collective modes of a spin-polarized 2D EG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.