Abstract
Fine structure has been observed in the nuclear paramagnetic resonance absorption line for protons in crystalline hydrates. The magnetic field of 6820 gauss was provided by a permanent magnet, the inherent stability of which facilitated detailed study of line shape. Measurements on a single crystal of CaSO4·2H2O show a splitting into four component lines with maximum separation varying from zero to 22 gauss, depending upon the direction of the externally applied magnetic field in the crystal. Both the number of component lines and the dependence of their spacing on field direction are calculated by treating the magnetic dipole-dipole interaction as a perturbation of the proton two-spin system within the water molecule; the effect of the more distant protons, neglected in this calculation, gives a finite width to the component lines. Variation of the splitting with field direction determines the orientation of the line joining protons in the water molecule, which is found to be consistent with positions ascribed to hydrogen nuclei in the lattice through simple considerations of chemical bonding. The distance between protons in the water molecule is measured by the splitting to be 1.58A for CaSO4·2H2O; if one assumes an H–O–H bond angle of 108°, the O–H distance is 0.98A. Powdered hydrates show a characteristic fine structure arising from isotropic distribution in solid angle of single crystal granules. This type of fine structure determines the proton-proton distance somewhat less accurately than does the single crystal experiment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have