Abstract

The development of the ovarian follicle to its culmination by ovulation is an essential element of fertility. The final stages of ovarian follicular growth are characterized by granulosa cell proliferation and differentiation, and steroid synthesis under the influence of follicle-stimulating hormone (FSH). The result is a population of granulosa cells poised to respond to the ovulatory surge of luteinizing hormone (LH). Members of the nuclear receptor superfamily of transcription factors play indispensable roles in the regulation of these events. The key regulators of the final stages of follicular growth that precede ovulation from this family include the estrogen receptor beta (ESR2) and the androgen receptor (AR), with additional roles for others, including steroidogenic factor-1 (SF-1) and liver receptor homolog-1 (LRH-1). Following the LH surge, the mural and cumulus granulosa cells undergo rapid changes that result in expansion of the cumulus layer, and a shift in ovarian steroid hormone biosynthesis from estradiol to progesterone production. The nuclear receptor best associated with these events is LRH-1. Inadequate cumulus expansion is also observed in the absence of AR and ESR2, but not the progesterone receptor (PGR). The terminal stages of ovulation are regulated by PGR, which increases the abundance of the proteases that are directly responsible for rupture. It further regulates the prostaglandins and cytokines associated with the inflammatory-like characteristics of ovulation. LRH-1 regulates PGR, and is also a key regulator of steroidogenesis, cellular proliferation, and cellular migration, and cytoskeletal remodeling. In summary, nuclear receptors are among the panoply of transcriptional regulators with roles in ovulation, and several are necessary for normal ovarian function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call