Abstract
Understanding the origin of charge-density wave (CDW) instability is important for manipulating novel collective electronic states. Many layered transition metal dichalcogenides (TMDs) share similarity in the structural and electronic instability, giving rise to diverse CDW phases and superconductivity. It is still puzzling that even isostructural and isoelectronic TMDs show distinct CDW features. For instance, bulk NbSe2 exhibits CDW order at low temperature, while bulk NbS2 displays no CDW instability. The CDW transitions in single-layer NbS2 and NbSe2 are also different. In the classic limit, we investigate the electron correlation effects on the dimensionality dependence of the CDW ordering. By performing ab initio path integral molecular dynamics simulations and comparative analyses, we further revealed significant nuclear quantum effects in these systems. Specifically, the quantum motion of sulfur anions significantly reduces the CDW transition temperature in both bulk and single-layer NbS2, resulting in distinct CDW features in the NbS2 and NbSe2 systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.