Abstract

Constant uncertainty molecular dynamics (CUMD), which was developed to include nuclear quantum effects (NQEs) in molecular dynamics (MD) simulations, is extended to three-dimensional condensed-phase systems. Its applicability was verified via CUMD simulations of bulk water and ice Ih with the q-TIP4P/F potential model. The simulated radial distribution functions, proton momentum distributions, and infrared spectra were compared with those of previous studies in which the simulations were carried out on the basis of the imaginary-time path-integral formalism. We found that CUMD can function as an alternative trajectory-based simulation method for including static and dynamic NQEs in MD simulations of three-dimensional condensed-phase systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call