Abstract
Upon drug activation, the nuclear pregnane X receptor (PXR) regulates not only hepatic drug but also energy metabolism. Using Pxr(-/-) mice, we have now investigated the PXR-mediated repression of lipid metabolism in the fasting livers. Treatment with PXR activator pregnenolone 16alpha-carbonitrile (PCN) down-regulated the mRNA levels of carnitine palmitoyltransferase 1A (in beta-oxidation) and mitochondrial 3-hydroxy-3-methylglutarate-CoA synthase 2 (in ketogenesis) in wild-type (Pxr(+/+)) mice only. In contrast, the stearoyl-CoA desaturase 1 (in lipogenesis) mRNA was up-regulated in the PCN-treated Pxr(+/+) mice. Reflecting these up- and down-regulations and consistent with decreased energy metabolism, the levels of hepatic triglycerides and of serum 3-hydroxybutylate were increased and decreased, respectively, in the PCN-treated Pxr(+/+) mice. Using gel shift, glutathione S-transferase pull-down and cell-based reporter assays, we then examined whether PXR could cross-talk with the insulin response forkhead factor FoxA2 to repress the transcription of the Cpt1a and Hmgcs2 genes, because FoxA2 activates these genes in fasting liver. PXR directly bound to FoxA2 and repressed its activation of the Cpt1a and Hmgcs2 promoters. Moreover, ChIP assays showed that PCN treatment attenuated the binding of FoxA2 to these promoters in fasting Pxr(+/+) but not Pxr(-/-) mice. These results are consistent with the conclusion that PCN-activated PXR represses FoxA2-mediated transcription of Ctp1a and Hmgcs2 genes in fasting liver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.