Abstract
It has been reported that reactive oxygen species (ROS) play a role as intracellular signaling molecules in RANKL stimulation. Previously we demonstrated that induction of cytoprotective enzyme expression by Nrf2-gene transfer successfully ameliorated RANKL-dependent osteoclastogenesis. In the present study, we hypothesized that Nrf2 activation by inhibiting ubiquitination and degradation of Nrf2 by ETGE-peptide would induce Nrf2-dependent cytoprotective enzyme expression, attenuate ROS signaling, and thereby inhibit RANKL-dependent osteoclastogenesis. ETGE-peptide containing a cell-permeable sequence (seven consecutive arginine; 7R-ETGE) was applied to a mouse macrophage cell-line RAW 264.7 cell or a primary macrophage culture. ETGE-peptide prevents Keap1 from binding to Nrf2. Nrf2 nuclear translocation and Nrf2-dependent cytoprotective enzyme induction was observed. The effects of 7R-ETGE on RANKL-dependent induction of intracellular ROS levels and osteoclastogenesis were examined. Finally, the protective effect of 7R-ETGE on RANKL-mediated bone destruction was investigated in mice. 7R-ETGE dose-dependently induced nuclear Nrf2, followed by the induction of cytoprotective enzyme expression at both the gene and protein level. 7R-ETGE inhibited upregulation of intracellular ROS levels by RANKL stimulation, and osteoclastogenesis was attenuated. Of particular interest was that local injection of 7R-ETGE ameliorated RANKL-mediated bone destruction. Local induction of nuclear Nrf2 by protein transduction is a potential novel therapeutic target for bone destruction diseases such as periodontitis and rheumatoid arthritis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.