Abstract
Abstract The atomic beam magnetic resonance method combined with laser-induced state- and isotopeselective detection of metastable atoms has been used to investigate the hyperfine structure of the 2D ground multiplet in 175Lu and 176Lu. The analysis of the data yields not only accurate values for the hyperfine interaction constants, the nuclear magnetic dipole moment of 175Lu, and the electronic gJ, factors, but also the first directly measured value of the nuclear magnetic dipole moment of the low abundant isotope 176 Lu : μ I ( 176 Lu) = 3.1692 (45)μ N (corrected for diamagnetic shielding). The spectroscopic quadrupole moment of 176Lu was calculated from the ratio of the B-factors and the quadrupole moment of 175 Lu : Q s ( 176 Lu ) = 4.92 (3) b . Moreover, the magnetic hyperfine anomalies for the isotopic chain 175,176,176m,177Lu were determined. A quadrupole hyperfine anomaly between 175Lu and 176Lu was not found when comparing the ratio of the B-factors in the states 2 D 3 2 and 2 D 5 2 . From a comparison of the quadrupole moment of 175Lu obtained from the hyperfine structure data and the quadrupole moment measured in muonic lutetium atoms semi-empirical Sternheimer shielding factors could be estimated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.