Abstract
The equation of state (EOS) of dense matter plays an important role in the supernova phenomenon, the structure of neutron stars, and in the mergers of compact objects (neutron stars and black holes). During the collapse phase of a supernova, the EOS at subnuclear densities controls the collapse rate, the amount of deleptonization and thus the size of the collapsing core and the bounce density. Properties of nuclear matter that are especially crucial are the symmetry energy and the nuclear specific heat. The nuclear incompressibility, and the supernuclear EOS, play supporting roles. In a similar way, although the maximum masses of neutron stars are entirely dependent upon the supernuclear EOS, other important structural aspects are more sensitive to the equation of state at nuclear densities. The radii, moments of inertia, and the relative binding energies of neutron stars are, in particular, sensitive to the behavior of the nuclear symmetry energy. The dependence of the radius of a neutron star on its mass is shown to critically influence the outcome of the compact merger of two neutron stars or a neutron star with a small mass black hole. This latter topic is especially relevant to this volume, since it stems from research prompted by the tutoring of David Schramm a quarter century ago.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have