Abstract

New global statistical models of nuclidic (atomic) masses based on multilayered feedforward networks are developed. One goal of such studies is to determine how well the existing data, and only the data, determines the mapping from the proton and neutron numbers to the mass of the nuclear ground state. Another is to provide reliable predictive models that can be used to forecast mass values away from the valley of stability. Our study focuses mainly on the former goal and achieves substantial improvement over previous neural-network models of the mass table by using improved schemes for coding and training. The results suggest that with further development this approach may provide a valuable complement to conventional global models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.